
p0sT5n1F3r

Security Report
10.2019

Reverse Engineering
of a breach

SUMMARY

1. Introduction

2. First results

3. An important discovery

p0sT5n1F3r // Reverse Engineering of a breach

© 2019 Yarix - All rights reserved

3

Introduction

First results

The Yarix team analyzed
a very insidious backdoor,
recognized today as 100%
clean: a complex artifact
designed exclusively
for the Customer’s
environment.

The hooks exploited by
this module are offered
natively by the Apache
module.

Let’s start from the beginning: what is an Apache module? At
high level it can be considered as a sort of library: additional
code used to extend native functionalities - in this case of the
Web Server.

Today, in the standard package distributions, we find some
already installed by default, such as mod_ssl or mod_php. In
this specific case we found a module, mod_dir.so, which imitates
in all respects the functionality of the standard one but adds
others, really insidious.

The framework provided by Apache provides the developer with
a series of hooks. These allow to run additional code during the
different states of execution of the process.

During a recent engagement our Incident Response Team had
the opportunity to analyze a very insidious backdoor implanted
in an Apache web server. This allows sniffing HTTPS traffic
when it is licitly decrypted by the web-server. What caught our
attention was the fact that this component, while revealing many
of the features of the Linux/Cdorked.A backdoor, may today be
recognized as 100% clean on Virus Total.

It is not every day that we find ourselves faced with cases
like this: we are definitely facing a complex artifact designed
exclusively for the Customer’s environment which, thanks
to extensive use of encryption, is not detected by any anti-
malware platform, not even the most advanced ones that have
conquered the market in recent years with behavioral and / or
machine learning algorithms.

Apache backdoors are nothing new: unfortunately, those
who are victims of malware such as Linux/Cdorked.A should
remember its features and how it interacted with the infamous
Blackhole exploit kit. The use of external modules or plugins
for web-servers is a known persistence technique, used and
abused over the years but still utilized today. Even last year, Palo
Alto intelligence sources revealed that the OilRig group used
the RGDoor module as a backdoor for the IIS web-server in
attacks in the Middle East.

The case

Static analysis2.

1.

p0sT5n1F3r // Reverse Engineering of a breach

© 2019 Yarix - All rights reserved

4

In particular, the hooks exploited by this module (img 1) are offered natively by the
Apache framework and therefore we can know what and how they should be used
(ref here).

Hooks used by the module
Image 1

https://httpd.apache.org/docs/2.4/developer/modguide.html

p0sT5n1F3r // Reverse Engineering of a breach

© 2019 Yarix - All rights reserved

5

• ap_hook_child_init: place a hook that executes when a child process is spawned
(commonly used for initializing modules after the server has forked).

• ap_hook_post_config: place a hook that executes after configuration has been
parsed, but before the server has forked.

• ap_hook_insert_filter: place a hook that executes when the filter stack is being
set up.

• ap_hook_handler: place a hook that executes on handling requests.

• ap_hook_log_transaction: place a hook that executes when the server is about to
add a log entry of the current request.

• ap_hook_register_input_filter: place a hook that executes a custom function
when input is required.

• ap_hook_fixups: place a hook that executes right before content generation.

Based on the description of these functions, we have an idea of how the module
works (img 2).

Request processing in Apache 2
Ref: Apache Tutor

Image 2

Data Axis

Metadata Processing

Output
Filters

Input
Filters

Processing
AxisLoggingAccept

Request
Content
Generator

http://www.apachetutor.org/dev/request

p0sT5n1F3r // Reverse Engineering of a breach

© 2019 Yarix - All rights reserved

6

Analyzing the individual functions that are performed by these hooks we can try to
understand what this module actually does.

HOOK 1 | ap_hook_child_init
The first function performed is the one that is called by ap_hook_child_init.
Thanks to IDAPro’s capabilities it is possible to understand which functions of the
standard library are called.

It is therefore possible to get a high-level idea of the actions performed as soon as
Apache creates a child process to handle a request that arrives towards the server
port 80 or 443 (img 3).

Image 3

Module Initialization routine

During initialization the module attempts to create a mutex and, if it fails, generates an
error which is then logged by the _ap_log_error function.
A sort of debug printf on an error_log.

The other function called apr_shm_baseaddr_get is more interesting and gets,
through the RDI register, the base address of the shared memory segment.
Unfortunately, at the moment we are not able to understand much more from static
analysis.

HOOK 2 | ap_hook_post_config
The second hook ap_hook_post_config that we are going to analyze is executed
immediately before the father Apache process reduces its root privileges to
www-data. In fact these privileges serve to allocate portions of memory which will then
be used during the operation of the module. It is possible to note the portion of code
that allocates a new memory pool (img 4).

p0sT5n1F3r // Reverse Engineering of a breach

© 2019 Yarix - All rights reserved

7

Portion of code that allocates a memory pool
Image 4

Until now we found nothing really strange or malicious or interesting. The module
begins to show its capabilities in the functions called by the other hooks.

It is here that we meet for the first time the string that from now on will represent
the name of our malware: p0sT5n1F3r=

Our attention is immediately struck by this string which is passed as an argument to
the function ap_register_input_filter. The official documentation shows that the
prototype of this function is:

ap_register_input_filter
(“filter name”, filter_function, AP_FTYPE_CONTENT)

The first parameter is the name of the filter, the second is the function performed by
the filter and the third is the type of filter. So we know that:

• the module registers an input filter
• the filter is called p0sT5n1F3r=
• the filter, when invoked, executes the function sub_38C7
• the filter acts on the content of the request and not on its headers

Before going into the details of how it works let’s try to get an overview of the other
functions used by the module, so as to focus on what is really interesting. Reverse
engineering in general is an activity that requires a lot, a lot of time and the risk of
getting lost in the technicalities of assembly language is very high.

p0sT5n1F3r // Reverse Engineering of a breach

© 2019 Yarix - All rights reserved

8

HOOK 3 | ap_hook_insert_filter
Let’s take a look at the function ap_hook_insert_filter now. Its prototype is:

ap_hook_insert_filter(filter_insert, NULL, NULL, APR_HOOK_MIDDLE)

Thus, the inserted filter is given by the function passed as the first argument, ie the
function sub_34AB. This function takes care of building the filter which will then be
activated inside the module and in fact the function ap_regexec is used, whose role is
that of “Match to NUL-terminated string against a pre-compiled regex” (img 5).

Role of the function ap_regexec
Image 5

p0sT5n1F3r // Reverse Engineering of a breach

© 2019 Yarix - All rights reserved

9

It is clear that the regular expression passed to the function resides in the position of
the qword_209628 but it is clearly obtained at runtime, since in static analysis this
location is empty.

What did we understand until now?
From the static analysis of these functions we were able to understand that the
module:

 - is characterized by the string p0sT5n1F3r=
 - takes care of inserting an input filter within the task of processing requests
 coming to the web-server
 - acts on the body of requests and not on headers
 - the filter is activated only if it meets the exact match of a string that is obtained at
 runtime.

p0sT5n1F3r // Reverse Engineering of a breach

© 2019 Yarix - All rights reserved

10

An important
discovery

The approach we are following was useful to begin to
understand how the module works because the code was
not obfuscated and none of the functions, custom or standard
libraries, were resolved at runtime.

This unfortunately is no longer true for the two other functions,
the most interesting, which are called by the ap_hook_handler
hook and by ap_register_input_filter.

In the first case we are dealing with a clearly more complex
function that makes extensive use of encrypted strings (img 6-7).

Continuing analysis3.

Function performed when the module is invoked

Image 6

p0sT5n1F3r // Reverse Engineering of a breach

© 2019 Yarix - All rights reserved

11

Encrypted strings

Image 7

Runtime resolution of the CALL instruction
Image 8

In the second case we find calls to functions dynamically resolved at runtime like this
one highlighted below: the CALL instruction is resolved at runtime by calling a memory
address placed in the RAX register (img 8).

p0sT5n1F3r // Reverse Engineering of a breach

© 2019 Yarix - All rights reserved

12

Before tackling the reversing of these two functions we decide to change approach.
Analyzing the encrypted strings we find one that we highlighted earlier, Dz27Dz27,
which has an important feature (img 9).

Encrypted string
Image 9

It is located at a very precise address within the binary and is called several times
within the previous two functions that we have decided not to analyze. For example,
we find two calls in the function sub_3D17 (img 10).

Functions that call the string
Image 10

They are two locations, loc_4471 and loc_4170, which use exactly the same data.
Very interesting is also the fact that the dword_209464 is positioned exactly after
the string highlighted before, almost as if they were the declarations of two variables
closely related in some way. Curiosity obviously pushes us to check out what this
function does (img 11).

p0sT5n1F3r // Reverse Engineering of a breach

© 2019 Yarix - All rights reserved

13

The encryption function
Image 11

In this shape it does not tell us much. However, if we see the decompiled code (img 12).

Decompiled function code
Image 12

p0sT5n1F3r // Reverse Engineering of a breach

© 2019 Yarix - All rights reserved

14

Those who deal with malware reverse engineering and encryption algorithms will have
understood that in cases like this - nine times out of ten - this is the RC4 encryption
algorithm. This is in fact the part of the algorithm known as KSA (Key Scheduling
Algorithm) (img 13).

KSA (Key Scheduling Algorithm)
Source here

Custom implementation of RC4 encryption
Source here

Image 13

Image 14

The key and its length are identified as arguments of the function. Once this new
information is obtained, we are therefore able to trace where this algorithm is used to
encrypt and decrypt data saved statically in the binary.
We find the first reference in this interesting function in which we were also able to
identify the second part of the RC4 algorithm, the one known as Pseudo-random
generation algorithm (PRGA) (img 14).

https://en.wikipedia.org/wiki/RC4
https://en.wikipedia.org/wiki/RC4

p0sT5n1F3r // Reverse Engineering of a breach

© 2019 Yarix - All rights reserved

15

Having therefore the RC4 key and the length of the encrypted buffer we can proceed
to decrypt the buffer. To do this we will use CyberChef (img 15).

CyberChef
Source here

Image 15

These evidences have been disruptive for the outcome of the incident response and
resolution of the case. Analysing these strings we can surely proceed forward in the
forensic activity of the machine and therefore obtain Indicators Of Compromise (IoC).

Another very important indication of how specifically the module was built for
the Customer’s environment is the presence of the string /Home/Acquisto. This
information fits exactly with what we have understood from the static analysis: the
regular expression created during the initialization of the module would seem to look
for the match with this string which, incidentally, is exactly the URL that deals with
finalizing the monetary transaction where the user enters the data for payment.

The RC4 algorithm is used in many other functions within the module: each data is
never in clear text but always encrypted. However, having the encryption key we can
proceed a little faster. In particular, a full-bodied buffer inside the track aroused the
curiosity of the reverse engineering team (fig.16).

http://icyberchef.com/

p0sT5n1F3r // Reverse Engineering of a breach

© 2019 Yarix - All rights reserved

16

Encrypted buffer
Image 16

A buffer of around 12KB that we can decipher with the same methodology as before
(img 17).

Decrypted buffer
Image 17

p0sT5n1F3r // Reverse Engineering of a breach

© 2019 Yarix - All rights reserved

17

modIframe
Image 18

An html page, saved inside the module, showing a title mod_sniffer and an image
called modIframe (img 18).

Apart from the nice subtitle the page shows some interesting information: there are in
fact variables that are obviously resolved at runtime like the kernel version or uptime
and others of which, at the moment, we do not know the meaning.

The module is still in the analysis phase.

We share the hashes that identify it:

MD5	
1720aca23d81e0aa6fa28096781294c3

SHA-1	
df454026aac01ad7e394c9f5c2bfdb12fea9a0e0

SHA-256	
1c55ffee91e8d8d7a1b4a1290d92a58c4da0c509d5d8d2741cec7f4cf6a099bd

Author

Mario Ciccarelli
Head of IR Team Yarix - Digital Security Division Var Group

@Kartone

Special thanks to

Alessandro Amadori
Solution Specialist - Digital Security Division Var Group

